

What elements make up stars?

- Almost all stars are
 - 73% Hydrogen
 - 25% Helium
 - 2% other
- Ex. of emission spectra
 - Burning gas releases
 energy @ diff
 wavelengths
 - Corresponds to a color

How are distances to stars measured?

- Astronomical Units (AU): avg distance from Sun-Earth
- Light-year (ly)= 9.461 X 10¹² km
 - DISTANCE light travels in 1 year
- Parsec (pc)= 3.26 ly
 - 3.086 X 10¹³ km

Proxima Centauri: closest star to Sun (4.2 ly) but dimmest in cluster Alpha Centauri A & B: sep. by distance of Sun-Uranus (4.4 ly), brighter

How are stars classified?

- Mass: determines life span
- Diameter
- Temperature
- Luminosity: power/energy released (Watts)
- Magnitude: brightness
 - Apparent magnitude: how bright it appears in sky
 - How it looks from Earth/@ equal distances
 - Absolute magnitude: how bright it WOULD be @ 10 pc
 - At equal distances
- Factors determine a star's spectral class...

What is spectral class you ask?

- A way of classing stars based on properties
- Temperature:
 - OBAFGKM [<u>O</u>h <u>B</u>e <u>A</u> <u>F</u>ine <u>G</u>irl/<u>G</u>uy,
 <u>K</u>iss <u>M</u>e](stars first identified were A and so on...)
 - Hottest → Coolest
 - Blue → Red
- Subclasses indicated by 0-9
 - Specific indication of temp
 - Sun= $G2 \rightarrow 5800 \text{ K}$
- Hertzsprung-Russell diagram
 - X=temperature
 - Y=luminosity/brightness
- Main sequence=where 90% stars occupy

HR Diagram

Sun

- Largest object in solar system
 - Mass=99% of all mass in SS
 - Diameter=109 Earth's fit across Sun
 - Density 1300kg/m³ ~Jupiter
- Interior= plasma or ionized gases (only nuclei & electrons) at temps of 10,000,000 K
- Light produced each second = 4 trillion trillion
 100-W lightbulbs
- ~5 billions years to go—will have used up all H core

Layers of Atmosphere of Sun

Name of Layer

- Photosphere
 - Innermost layer
 - Visible surface of Sun
 - Releases visible light
 - 400 km thick, 5800 K
- Chromosphere
 - 2500 km thick, 30,000 K
 - Strongest emissions=red λ
 - UV wavelengths
- Corona
 - Several million km thick, 1-2 mill
 K
 - Low density of gas
 - Emit X rays
 - Very dim → seen during eclipse when photosphere is blocked

Solar Wind

- Created by high speed gas flowing from corona
- At 1 AU: 400 km/s wind of ions (charged particles)
 - Deflected by Earth's magnetic field
 - Trapped in 2 huge rings called
 Van Allen Belt
- VA belts collide with gases in E's atmos to create an aurora

Solar Wind / Van Allen Belts

Aurora Borealis/Northern Lights

Solar Activity

Changes to Sun's features over periods of time...caused by the Sun's magnetic field

Sunspots

- Dark spots on photosphere where pressure of magnetic field pokes through
- Appear darker than surrounding area b/c cooler in temp (but are bright)
- Occur in pairs with a north
 & south pole; like magnets
- Over course of 11.2 yrs: starts w/ min #→max # then magnetic field reverses in polarity

Solar flares and prominences

Solar Flares

- Violent eruptions of particles & radiation
- Can hit Earth & damage atmosphere, disrupt longrange radios, satell. & radar
- solar flame animation

Prominences

- Arcs of gas ejected from chromosphere
- 50,000 K, hrs-mths long

Binary Stars

- only 2 stars are gravitationally bound together
- orbit a <u>common center of</u> <u>mass</u>
- More than ½ the stars in the sky are either binary stars or are part of a multiple-star system
- Most binary stars appear to be a single star to the human eye + with tele. → too close and one is brighter

Doppler Shift

- Way to tell that a star is one of a binary pair
- Doppler shift=subtle wavelength shifts
 - Star shifting TOWARD observer=shorter wavelength/BLUESHIFT
 - Star shifting AWAY from observer=longer wavelength/ REDSHIFT
 - The higher the speed, the larger the shift.
 - Observe binary stars as they move about their center of mass toward/away from Earth

Parallax

- Apparent shift in position caused by motion of observer
- Try this! Hold pencil out and alternate closing each eye notice "shift"?
- As E moves from one side of its orbit to opp. Side, a nearby star appears to shift
 - The closer the star, the larger the shift
 - --the dist. to a star can be
 estimated from its parallax
 shift → measuring angle of
 change

The larger the distance, the smaller the parallax (angle)

Parallax decreases with distance

